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1 Section 3.6: the chain rule
2 Section 3.8: derivatives of logarithms (only pages 176–181)
3 Section 4.1: extreme values
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Composition recap (see lecture 1) 1.1

f ◦g
x g f

g(x)
f
(
g(x)

)
f
(
g(x)

)
= f ◦g(x)

The composition of f and g is the function that maps x to f
(
g(x)

)
The composition is denoted as f ◦g, and is pronounced as “f after g”.
Example: let f (x) = x2 and let g(x) = x + 1, then

f ◦g(x) = f
(
g(x)

)
= f (x + 1) = (x + 1)2 = x2 + 2x + 1

and

g ◦ f (x) = g
(
f (x)

)
= g(x2) = x2 + 1.

In general f ◦g and g ◦ f are not identical.
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Composition with a linear function 1.2

Let f (x) = ax + b and g(x) = sin(x) and define h = f ◦g, then

h(x) = f ◦g(x) = f
(
g(x)

)
= a sin(x) + b

Using the sum rule and constant multiple rule we know that

h′(x) = a cos(x)

Now let h = g ◦ f then

h(x) = g
(
f (x)

)
= sin(ax + b)

The sum- and constant multiple rule cannot be applied
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Composition with a linear function 1.3

x

y

1
2π π 3

2π 2π

1

−1 sin x

sin(3x)

x 3x

Consider the special case h(x) = sin(3x). The graph of h is obtained
by scaling sin x in horizontal direction.
The slopes of all tangents are scaled too!
By scaling back sin(3x) in vertical direction, this effect is cancelled out:

d
d x

(
1
3 sin(3x)

)
= cos(3x),

in other words: d
d x sin(3x) = 3 cos(3x).
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Composition with a linear function 1.4

We see that

f (x) = sin(ax) ⇒ f ′(x) = a cos(ax)

By shifting a graph horizontally, the slopes must shift accordingly:

f (x) = sin(ax + b) ⇒ f ′(x) = a cos(ax + b)

Chain rule, simple version

Let f be a differentiable function. Then for any constant a and b the
following holds:

d
d x
(
f (ax + b)

)
= af ′(ax + b).

Warning: d
d x
(
f (ax + b)

)
is the derivative of the composition

f (ax + b), but f ′(ax + b) is the composition of f ′ and y = ax + b.
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Examples 1.5

The derivative of sin(2x) is 2 cos(2x).

Define y =
√

5− 3x, then

d y
d x = − 3

2
√

5− 3x

since d
d x

(√
x
)

= 1
2
√

x .

Also: write 5− 3x = (−3)x + 5, hence a = −3 and b = 5.

d
d x

( 1
2ex

)
=
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Application: the derivative of exponential functions 1.6

See lecture 4: if we define f (x) = ax , then

f ′(x) = ka ax

where

ka = lim
h→0

ah − 1
h = f ′(0).

With the simple version of the chain rule we can prove: ka = ln a

d
d x (ax) =
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The chain rule 2.1

Chain rule
Let f and g be differentiable functions, then

d
d x f

(
g(x)

)
= f ′

(
g(x)

)
g′(x).

In words: multiply the composition of the derivative of f with g by
the derivative of g.

Work inward:
• differentiate the ‘outer function’ f , but keep the ‘inner
function’ g intact;

• then multiply with the derivative of the ‘inner function’ g.
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The chain rule 2.2

Example

Find the derivative of h(x) = (3x2 + 1)2.

The function h is equal to h = f ◦g, where
f (x) = x2 and g(x) = 3x2 + 1.

Apply the chain rule:

h′(x) =
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Anonymous functions 2.3

fx y

y = f (x)

x y

anonymous

If a function is named f , the derivative is denoted as f ′.
If y is an anonymous function of x, the derivative is denoted as d y

d x .

x z
y

If y is a function of x and z is a function of y, then z is (by composition)
a function of x. In this case the chain rule is

d z
d x = d z

d y
d y
d x .

Note that d z
d y is expressed in terms of y, hence afterwards you should

replace all occurrences of y with the corresponding expression in x.
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Anonymous functions 2.4

Example

Let y = 3x2 + 1 and z = y2, find d z
d x .

Apply the chain rule (anonymous variant):
d z
d x =
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The chain rule 2.5

Example

Find the derivative of f (x) = 1√
x2 + 1

.

Avoid using the quotient rule by writing

f (x) =
(
x2 + 1

)−1/2
.

Apply the chain rule:

f ′(x) =
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The chain rule 2.6

Example

Calculate the derivative of f (x) =

√
1− x2

1 + x2 .

Combine the chain rule with the quotient rule:

f ′(x) =
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Logarithms recap 3.1

The logarithmic function with base a is the inverse of the base-a
exponential function:

y = ax ⇐⇒ x = loga y

The natural logarithm is the logarithm with base e:

ln x = loge x where e ≈ 2.71828 . . .

Examples:

log2 8 = 3 because 23 = 8

log10 100 = 2 because 102 = 100

ln e
√

e = 3
2 because e

3
2 = e

√
e
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Logarithms recap 3.2

loga 1 = 0 and loga a = 1

loga xy = loga x + loga y

loga
x
y = loga x − loga y

loga
1
y = − loga y

loga xp = p loga x

loga x = logb x
logb a , in particular loga x = ln x

ln a

ax = bx logb a, in particular ax = ex ln a
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The derivative of ln(x) 3.3

Note that ex and ln(x) are each others inverse:

eln(x) = x.

Now take derivatives on both sides and apply the chain rule to the
left-hand side:

eln(x)ln′(x) = 1,

x ln′(x) = 1,

ln′(x) = 1
x .

This holds for x > 0.

1
x ln x

1
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The derivative of loga(x) 3.4

Theorem

The derivative of loga x is 1
x ln(a) .

From the change-of-base formula for logarithms follows

loga(x) = ln x
ln a .

Apply the constant-multiple rule:

f ′(x) =
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Example 3.5

Example

Find the derivative of f (x) = ln(x2 + 3).

Apply the chain rule:

f ′(x) =
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Extreme values of a function 4.1

xc

f (c) f

Consider a function f : D → R.

f has an absolute maximum in c if

f (x) ≤ f (c) for all x ∈ D
f has an absolute minimum in c if

f (x) ≥ f (c) for all x ∈ D

Extreme values do not necessarily have to exist!

?? If they exist, how do we find them?
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Extreme values of a function are domain dependent 4.2

0

f

On D = (−∞,∞) the function f (x) = x2 has

an absolute minimum in x = 0;
no absolute maximimum.

The range of f is [0,∞).
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Extreme values of a function are domain dependent 4.3

0

f

2

4

On D = [0, 2] the function f (x) = x2 has

an absolute minimum in x = 0;
an absolute maximum in x = 2.

The range of f is [0, 4].
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Extreme values of a function are domain dependent 4.4

0

f

2

4

On D = (0, 2] the function f (x) = x2 has

no absolute minimum;
an absolute maximum in x = 2.

The range of f is (0, 4].
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Extreme values of a function are domain dependent 4.5

0

f

2

4

On D = (0, 2) the function f (x) = x2 has

no absolute minimum;
no absolute maximum.

The range of f is (0, 4).
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Extreme values of a function are domain dependent 4.6

xa b

f

Extreme Value Theorem Theorem 1, page 223

A continuous function on a finite closed interval attains both an
absolute maximum and an absolute minimum.

The theorem tells us that extreme values do exist, but not where to
find them!
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Local extremes 4.7

xc

f
f (c)

xc

f

f (c) xc

ff (c)

Definition
Consider a function f : D → R.

f has a local maximum in c if
f (x) ≤ f (c) for all x in an environment of c

f has an local minimum in c if
f (x) ≥ f (c) for all x in an environment of c
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Critical points 4.8

x

f

First Derivative Theorem Theorem 2, page 225

If f is differentiable at c and f attains a local maximum or local minimum
at c then f ′(c) = 0.

Definition
The number c is a critical point of f if

f ′(c) = 0 or f is not differentiable at c.

Critical points are candidates for a local maximum or minimum.
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Critical points 4.9

sign of f ′

The function F is defined on the domain [a, b].

Critical points: c1, c2, c3, c4 and c5.
Local extremes: a, c2, c3, c4 and b.
Absolute extremes: a and c4.
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Finding extreme values 4.10

Recipe for computing the extreme values of a continuous function

f : [a, b]→ R

1 Find all critical points of f in [a, b], i.e., solve the equation f ′(x) = 0
and retain all solutions x in [a, b]; then add all points where f is not
differentiable.

2 Evaluate f at the critical points and at the end points
x = a and x = b.

3 Take the largest and smallest values found in step 2: these are the
absolute maximum and minimum of f on the interval [a, b].
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Extreme values Section 4.1, example 3 4.11

Example

Find extremes for f (x) = 10x(2− ln x) on
[
1, e2].

1 Find the critical points:

2 Evaluate f at the critical points and at the endpoints:

f (1) = f (e2) =

3 Take the largest and smallest values of step 2:

• The absolute maximum is

• The absolute minimum is
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Extreme values 4.12

Example

Find extremes for f (x) = xe−x on [−1, 1].

1 Find the critical points:

2 Evaluate f at the critical points and at the endpoints:

f (−1) = f (1) =

3 Take the largest and smallest values of step 2:

• The absolute maximum is

• The absolute minimum is
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Extreme values 4.13

Example

Find extremes for f (x) = 3x2 − 2x3 on
[
− 1

2 , 2
]
.

1 Find the critical points:

2 Evaluate f at the critical points and at the endpoints:

f
(
− 1

2

)
= f (2) =

3 Take the largest and smallest values of step 2:
• The absolute maximum is

• The absolute minimum is
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