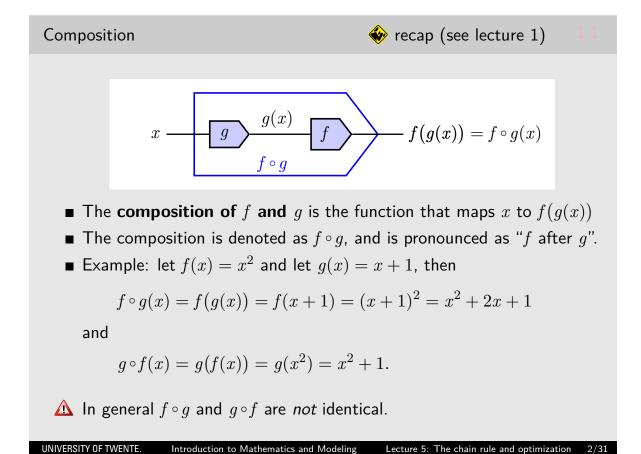


### This week



- **1** Section 3.6: the chain rule
- **2** Section 3.8: derivatives of logarithms (only pages 176–181)
- **3** Section 4.1: extreme values

1/31



Composition with a linear function

• Let f(x) = ax + b and  $g(x) = \sin(x)$  and define  $h = f \circ g$ , then

$$h(x) = f \circ g(x) = f(g(x)) = a\sin(x) + b$$

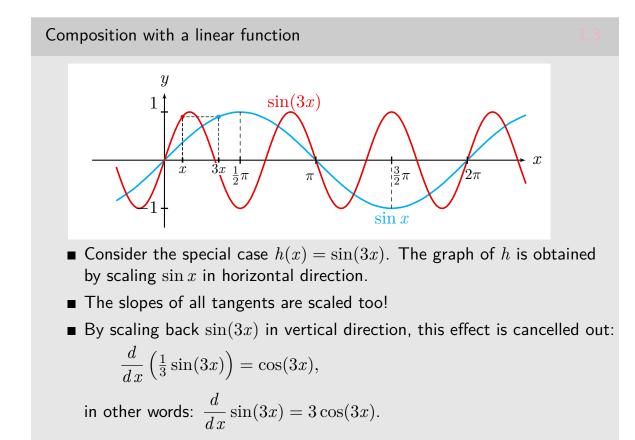
Using the sum rule and constant multiple rule we know that

$$h'(x) = a\cos(x)$$

 $\blacksquare$  Now let  $h = g \circ f$  then

$$h(x) = g(f(x)) = \sin(ax + b)$$

The sum- and constant multiple rule cannot be applied



Composition with a linear function

■ We see that

UNIVERSITY OF TWENTE.

$$f(x) = \sin(ax) \quad \Rightarrow \quad f'(x) = a\cos(ax)$$

Introduction to Mathematics and Modeling

■ By shifting a graph horizontally, the slopes must shift accordingly:

$$f(x) = \sin(ax+b) \quad \Rightarrow \quad f'(x) = a\cos(ax+b)$$

#### Chain rule, simple version

Let f be a differentiable function. Then for any constant a and b the following holds:

$$\frac{d}{dx}(f(ax+b)) = af'(ax+b).$$

A Warning:  $\frac{d}{dx}(f(ax+b))$  is the derivative of the composition f(ax+b), but f'(ax+b) is the composition of f' and y = ax + b.

5/31

Lecture 5: The chain rule and optimization

## Examples

5

UNIVERSITY OF TWENTE.

- The derivative of  $\sin(2x)$  is  $2\cos(2x)$ .
- Define  $y = \sqrt{5 3x}$ , then

$$\frac{d y}{d x} = -\frac{3}{2\sqrt{5-3x}}$$
  
since  $\frac{d}{d x} (\sqrt{x}) = \frac{1}{2\sqrt{x}}$ .

Also: write 5 - 3x = (-3)x + 5, hence a = -3 and b = 5.

$$\blacksquare \qquad \frac{d}{dx}\left(\frac{1}{2e^x}\right) =$$

Application: the derivative of exponential functions

Introduction to Mathematics and Modeling

• See lecture 4: if we define  $f(x) = a^x$ , then

$$f'(x) = k_a a^x$$

where

$$k_a = \lim_{h \to 0} \frac{a^h - 1}{h} = f'(0).$$

• With the simple version of the chain rule we can prove:

$$\frac{d}{dx}\left(a^{x}\right) =$$

6/31

 $k_a = \ln a$ 

Lecture 5: The chain rule and optimization

## Chain rule

Let f and g be differentiable functions, then

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x).$$

- In words: multiply the composition of the derivative of *f* with *g* by the derivative of *g*.
- Work inward:
  - differentiate the 'outer function' *f*, but keep the 'inner function' *g* intact;

Introduction to Mathematics and Modeling

• then multiply with the derivative of the 'inner function' g.

Lecture 5: The chain rule and optimization 8/31

# The chain rule

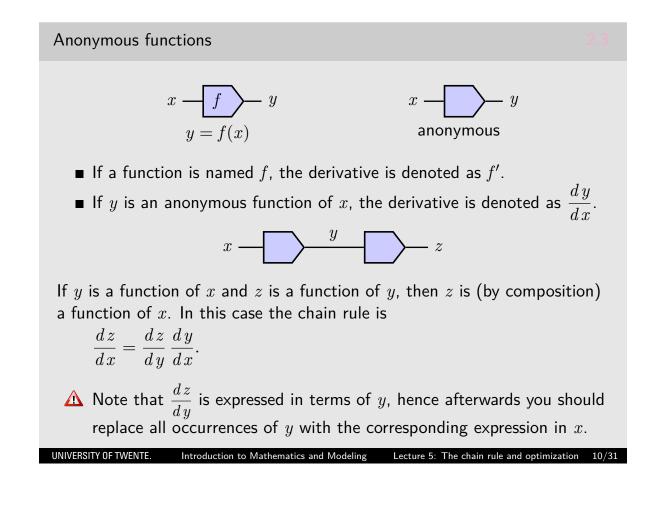
UNIVERSITY OF TWENTE.

# Example

Find the derivative of  $h(x) = (3x^2 + 1)^2$ .

- The function h is equal to  $h = f \circ g$ , where  $f(x) = x^2$  and  $g(x) = 3x^2 + 1$ .
- Apply the chain rule:

$$h'(x) =$$



#### Anonymous functions

#### Example

Let  $y = 3x^2 + 1$  and  $z = y^2$ , find  $\frac{dz}{dx}$ .

■ Apply the chain rule (anonymous variant):

$$\frac{d z}{d x} =$$

The chain rule

## Example

Find the derivative of  $f(x) = \frac{1}{\sqrt{x^2 + 1}}$ .

Avoid using the quotient rule by writing

Introduction to Mathematics and Modeling

Lecture 5: The chain rule and optimization

12/31

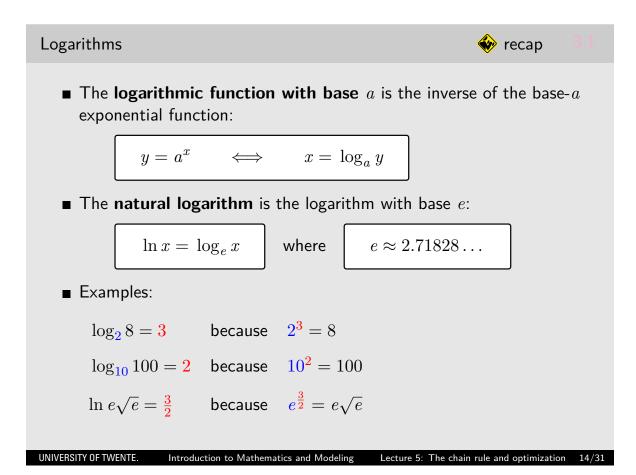
$$f(x) = \left(x^2 + 1\right)^{-1/2}.$$

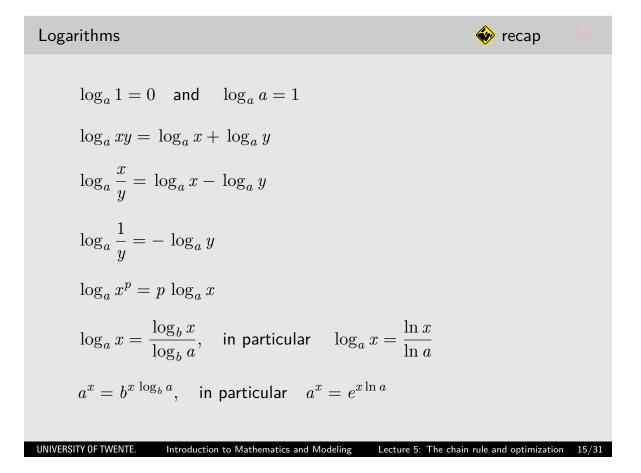
Apply the chain rule:

$$f'(x) =$$

UNIVERSITY OF TWENTE.

The chain rule 20 Example Calculate the derivative of  $f(x) = \sqrt{\frac{1-x^2}{1+x^2}}$ . • Combine the chain rule with the quotient rule: f'(x) =





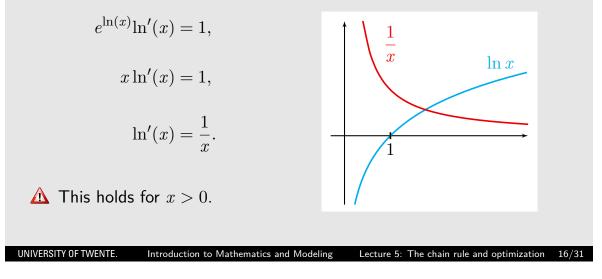
The derivative of  $\ln(x)$ 

UNIVERSITY OF TWENTE.

• Note that  $e^x$  and  $\ln(x)$  are each others inverse:

 $e^{\ln(x)} = x.$ 

Now take derivatives on both sides and apply the chain rule to the left-hand side:



Lecture 5: The chain rule and optimization

17/31

Introduction to Mathematics and Modeling

## Example

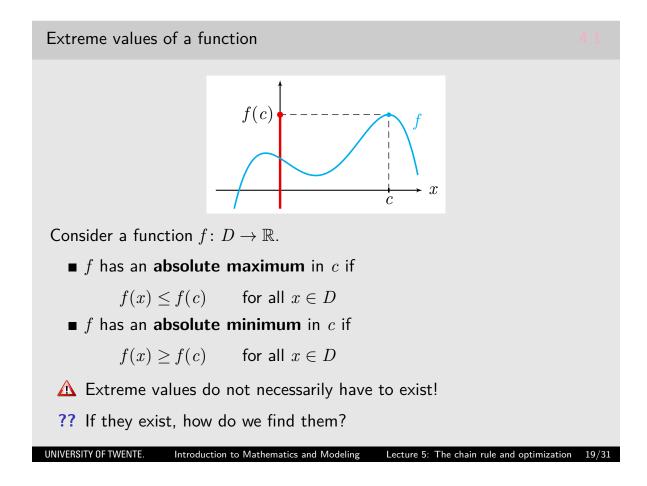
## Example

UNIVERSITY OF TWENTE.

Find the derivative of  $f(x) = \ln(x^2 + 3)$ .

Apply the chain rule:

$$f'(x) =$$

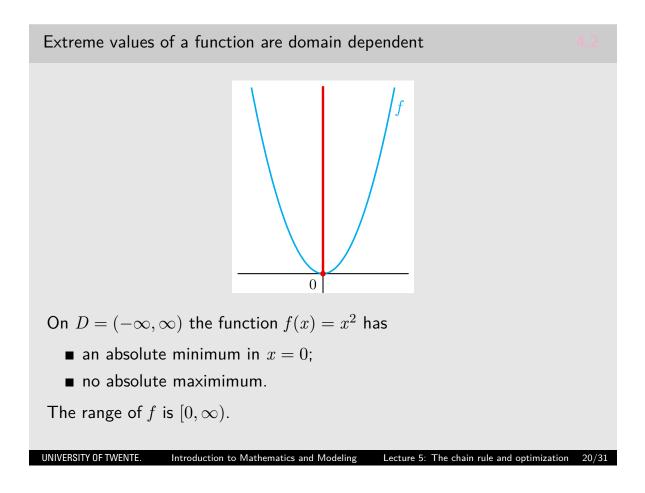


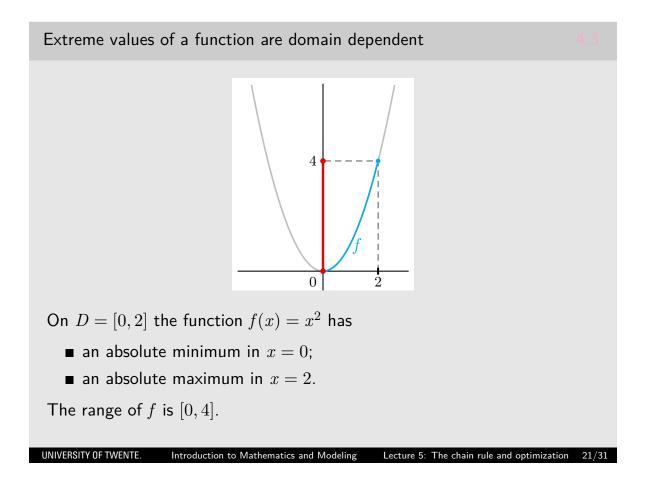
Introduction to Mathematics and Modeling

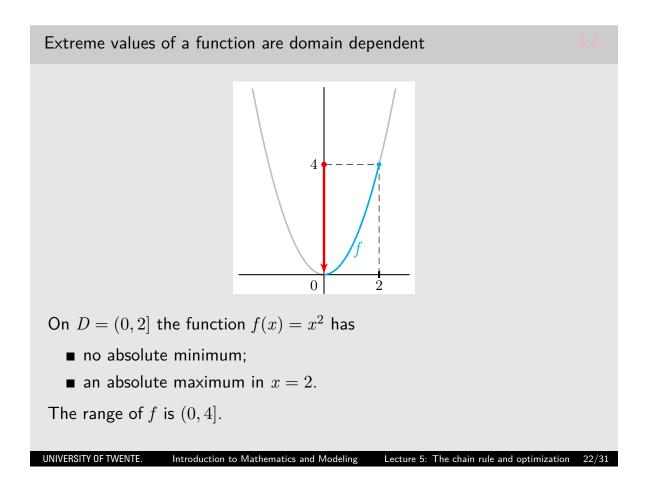
3.5

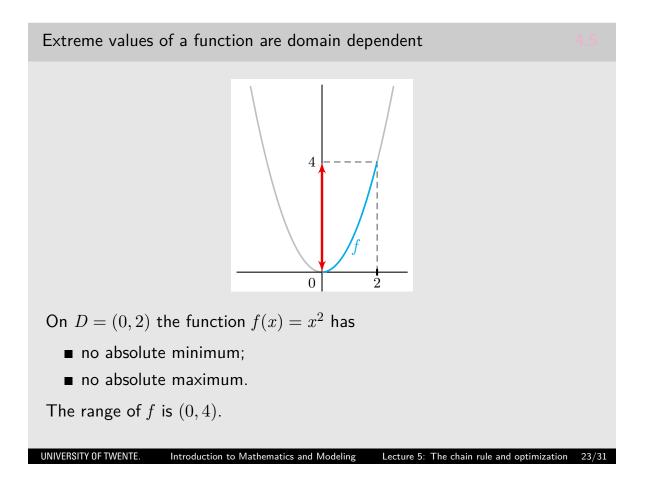
18/31

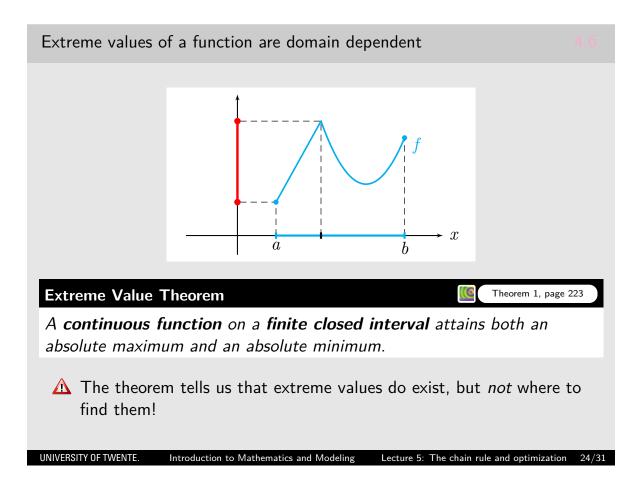
Lecture 5: The chain rule and optimization

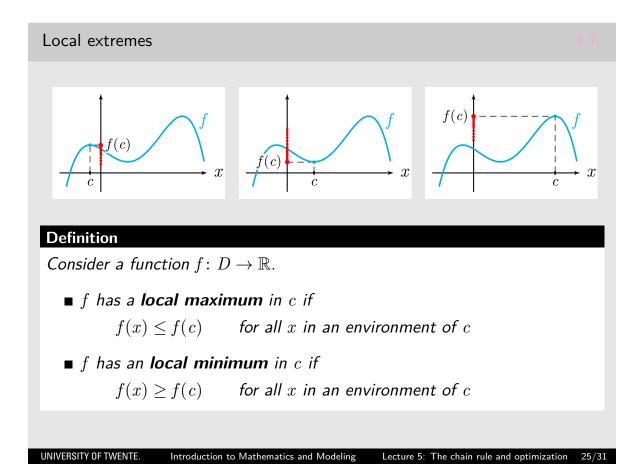


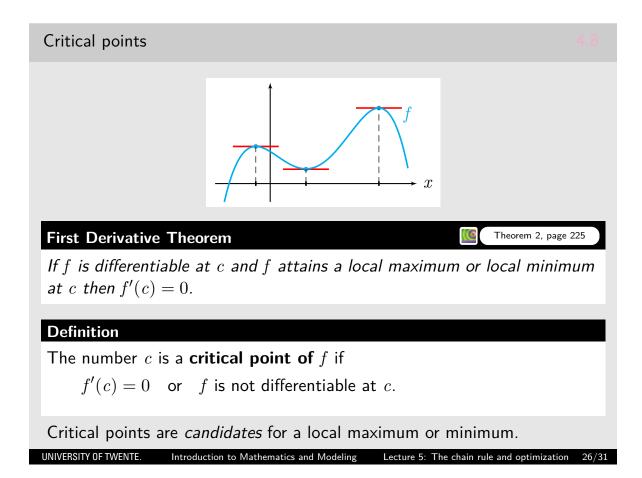


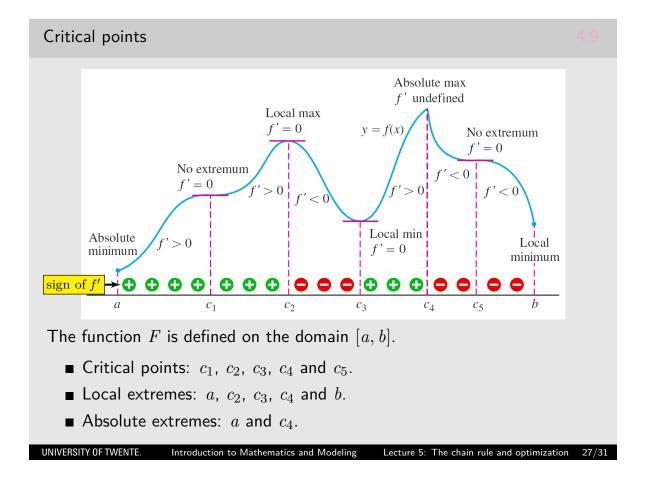












Finding extreme values

Recipe for computing the extreme values of a continuous function

 $f\colon [a,b]\to \mathbb{R}$ 

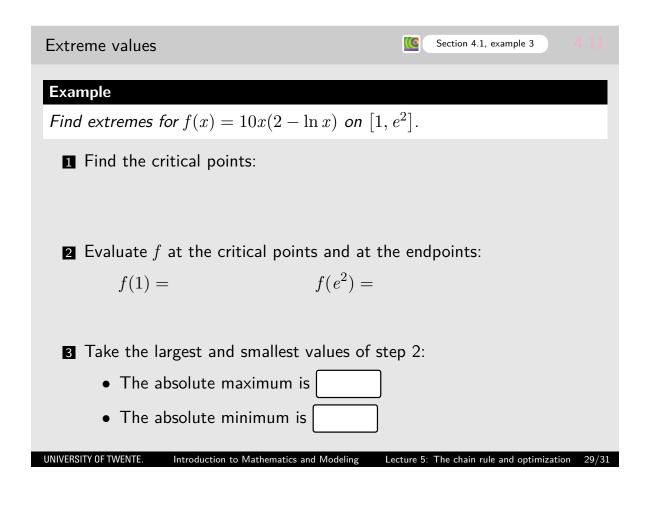
UNIVERSITY OF TWENTE.

- **1** Find *all* critical points of f in [a, b], i.e., solve the equation f'(x) = 0 and retain all solutions x in [a, b]; then add all points where f is not differentiable.
- **2** Evaluate f at the critical points and at the end points x = a and x = b.

Introduction to Mathematics and Modeling

**3** Take the largest and smallest values found in step 2: these are the absolute maximum and minimum of f on the interval [a, b].

Lecture 5: The chain rule and optimization



28/31

